#### Poster

# [P25-10] P25-10: Oncologic drugs (2)

Chair: Takuya Iwamoto, Japan Mon. Sep 25, 2017 12:30 PM - 1:30 PM Annex Hall (1F)

(Mon. Sep 25, 2017 12:30 PM - 1:30 PM Annex Hall )

# [P25-10-5] Open-label randomized study of individualized pharmacokinetically (PK)-guided dosing versus body surface area (BSA) dosing of paclitaxel (PTX) in advanced non-small cell lung cancer (NSCLC) NCT02058433

Salvatore Joseph Salamone<sup>1</sup>, Jie Zhang<sup>2</sup>, Huiwei Qi<sup>3</sup>, Huijuan Ni<sup>4</sup>, Yunying Li<sup>5</sup>, Jodi Courtney<sup>6</sup>, Caicun Zhou<sup>7</sup> (1.Saladax Biomedical, Inc., 2.Shanghai Pulmonary Hosptial, 3.Shanghai Pulmonary Hosptial, 4.Shanghai Pulmonary Hospital, 5.Saladax Biomedical, Inc, 6.Saladax Biomedical, Inc, 7.Shanghai Pulmonary Hosptial) Keywords: paclitaxel, non-small cell lung cancer, Pharmacokinetically guided dosing, randomized trial

# Background

Variability of PTX exposure using BSA dosing is well documented and often leads to severe toxicities. While carboplatin is dosed to obtain a specific exposure, paclitaxel is conventionally dosed by BSA, leading to a wide range of exposure. This study compared PTX PK-guided dosing to BSA dosing in PTX-carboplatin regimen in treating stage IIIB/IV NSCLC. This is the final analysis of interim results presented at ASCO 2015 (Poster #375).

# Methods

309 patients with stage IIIB/IV NSCLC were randomized to receive up to 4 cycles of first line 3-weekly carboplatin (AUC 5) and a PTX dose of 175 mg/m<sup>2</sup> (Arm A), or a PTX PK-guided dose (Arm B) to achieve a time above a PTX plasma concentration of 0.05M ( $T_{c>0.05}$ ) for 26 to 31 hours. Response was classified according to Response Evaluation Criteria in Solid Tumors Group. PTX concentrations were measured by immunoassay;  $T_{C>0.05}$  was calculated with PK software. Primary endpoint was reduction of grade 4 hematological toxicities.

#### Results

There were 164 patients in Arm A and 155 patients in Arm B, with 191 males and 128 females participating. PK-guided dose adjustment resulted in doses that were widely distributed 73 –175 mg/m<sup>2</sup>, and statistically lower than in the BSA arm (by 24%, p<0.001). Compared to Arm A, PK-guided dosing significantly reduced grade 4 neutropenia by 35% (p = 0.002, 23% vs.16%) over 4 cycles. The incidence of severe (grade 3) neutropenia was also significantly reduced by 25% in Arm B over all cycles (p=<0.001). Additionally, neuropathy (grade 2) was reduced from 20% in Arm A to 8% in Arm B (p=0.008), representing a 60% reduction over all cycles. Response rates were not significantly different; objective response rates were 23% in Arm A and 29% in Arm B (p=0.285); stable disease rates were 49% in Arm A and 42% in Arm B (p=0.0.240).

# Conclusions

Results of this study are in agreement with a previous report, and present further evidence that PK-guided dosing reduces severe toxicities. This is accomplished by an overall lowering of dose intensity, while still maintaining efficacy. PK-guided dosing personalizes chemotherapy, and may be useful in patient

#### management. ©IATDMCT

Generated by Confit.

IATDMCT 2017