[O26-4] O26-4: Pharmacogenomics (2)
Chairs: Tsuyoshi Fukuda, USA / Taisei Mushiroda, Japan
Tue. Sep 26, 2017 4:00 PM - 5:00 PM Room C1 (1F)

[Tue. Sep 26, 2017 4:00 PM - 5:00 PM Room C1]

[O26-4-1] Small-dosing clinical study: pharmacokinetic, pharmacogenomic (SLCO2B1 and ABCG2), and interaction (atorvastatin and grapefruit Juice) profiles of five probes for OATP2B1 and BCRP

Yushi Kashihara¹, Ichiro Ieiri², Takashi Yoshikado³, Kazuya Maeda⁴, Masato Fukae⁵, Miyuki Kimura⁶, Takeshi Hirota⁷, Shunji Matsuki⁸, Shin Irie⁹, Noritomo Izumi¹⁰, Hiroyuki Kusuhaⁱ¹, Yuichi Sugiyama¹² (1.Kyushu University, 2.Kyushu University, 3.RIKEN Innovation Center, 4.The University of Tokyo, 5.Kyushu University, 6.Fukuoka Mirai Hospital Clinical Research Center, 7.Kyushu University, 8.Fukuoka Mirai Hospital Clinical Research Center, 9.Fukuoka Mirai Hospital Clinical Research Center, 10.Fukuoka Mirai Hospital Clinical Research Center, 11.The University of Tokyo, 12.RIKEN Innovation Center)

Keywords: Drug interactions, Pharmacokinetics, Pharmacogenomics, OATP2B1, BCRP

Background
The aims of the present human study were (1) to investigate the effects of atorvastatin (10 mg, therapeutic dose) and grapefruit juice (GFJ), inhibitors of OATP2B1, on the pharmacokinetics of some substrates of OATP2B1 and BCRP (sulfasalazine, rosuvastatin, glibenclamide, celiprolol, and sumatriptan), and (2) to evaluate the contribution of SLCO2B1 c.1457C>T (SLCO2B1*3) and ABCG2 c.421C>A polymorphisms to the pharmacokinetics of the five test drugs. In order to evaluate these issues safely and efficiently, we applied the small-dosing cocktail approach to the protocol; the cocktail included dual substrates (sulfasalazine, rosuvastatin, and glibenclamide), an OATP2B1 substrate (celiprolol), and an unknown substrate (sumatriptan). We administered the five test drugs at less than 25% of the individual therapeutic dose.

Methods
Twenty-three healthy volunteers with genotypes for SLCO2B1*3 and ABCG2 c.421C>A were enrolled in this study. In a single-arm and three-phase study, the test drugs (300 μg sulfasalazine, 250 μg rosuvastatin, 300 μg glibenclamide, 1200 μg celiprolol, and 600 μg sumatriptan) were administered to volunteers with either water (control phase), 10 mg atorvastatin, or GFJ. The plasma concentrations of the drugs were quantified by LC-MS/MS. Non-compartmental pharmacokinetic analysis was performed using WinNonlin 6.4. The AUC₀-2⁴ of the test drugs was calculated by the linear trapezoidal rule. C_max and T_max values were obtained directly from data.

Results
GFJ, but not atorvastatin reduced the exposure of the test drugs significantly more than the control phase, suggesting that all five test drugs are substrates for OATP2B1. The SLCO2B1*3 genotype had no effect on the pharmacokinetics of the test drugs. In contrast, the exposure of sulfasalazine and rosuvastatin was significantly higher in ABCG2 421C/A than in ABCG2 421C/C individuals at all three phases, even under small-dosing conditions.

Conclusions
The results of the present study suggest that (1) 10 mg atorvastatin does not exert inhibitory effects on

©IATDMCT
Generated by Confit.
OATP2B1 functions in humans, (2) GFJ decreases the exposure of OATP2B1 substrates, and (3) ABCG2 421C>A is associated with changes in the pharmacokinetics of sulfasalazine and rosvastatin, even under small-dosing conditions.