Chairs: Koichiro Tsuchiya, Japan / Yasuo Takeda, Japan
Mon. Sep 25, 2017 1:30 PM - 2:30 PM Room D (1F)

CYP activity in paired human liver and jejunum samples
Veronica Krogstad¹, Alexandra Peric², Ida Robertsen³, Philip Carlo Angeles⁴, Rune Sandbu⁵, Line Kristin
Johnson⁶, Joran Hjelmaseth⁷, Cecilia Karlsson⁸, Shalini Andersson⁹, Anders Asberg¹⁰, Tommy Andersson¹¹,
Obesity Center and Vestfold Hospital Trust, 5.The Morbid Obesity Center and Vestfold Hospital Trust, 6.The
Morbid Obesity Center and Vestfold Hospital Trust, 7.The Morbid Obesity Center and Vestfold Hospital Trust,
12.University of Oslo)
Keywords: CYP activity, hepatic, intestinal, first-pass metabolism, cocktail

Background
The bioavailability of orally administered drugs is restricted by first-pass metabolism in the gut wall and the
liver. This is largely due to cytochrome P450 (CYP) enzymes expressed in both intestinal mucosa and
hepatocytes. However, there is limited data describing the relative contribution of the hepatic and intestinal
CYP activity to the overall first-pass metabolism in individual patients. In a clinical study in patients with
morbid obesity undergoing gastric bypass surgery, paired biopsies from jejunum and liver were obtained
from each patient. The aim of this project was to analyse ex vivo activities of seven CYP enzymes in
individually prepared jejunum and liver microsomes using a cocktail of CYP probes.

Methods
Liver and jejunum samples from 14 patients were analysed. The tissue samples were homogenized and
individual microsomal fractions were prepared. The microsomes were incubated for 20 minutes with a
cocktail of substrates (bupropion (CYP2B6), midazolam (CYP3A), bufuralol (CYP2D6), amodiaquine
(CYP2C8), diclofenac (CYP2C9), phenacetin (CYP1A2) and S-mephenytoin (CYP2C19)) in eight
concentrations. The chosen metabolite for each substrate was quantified with UPLC-MS/MS. The enzyme
kinetic parameters were obtained from untransformed data by nonlinear regression using GraphPad Prism.

Results
The liver microsomes showed considerable activities of all seven CYP enzymes, whereas the jejunum
microsomes mainly showed CYP3A and CYP2C9 activities. Interestingly, the intestinal microsomal fractions
also showed CYP2C8 activities. Interindividual variability of the various CYP activities ranged from 6 to 26-
fold and 3 to 47-fold in liver and jejunum, respectively. As expected, the hepatic CYP activities were overall
higher than respective intestinal CYP activities when normalized to total protein content, varying from 1.5-
fold (CYP3A) to 300-fold (CYP2C8). The paired tissue samples showed poor correlation in CYP-activities,
except for a significant positive correlation in CYP2C9 activities (r= 0.62, P=0.022).

Conclusions
Activities of seven CYP enzymes assessed in paired samples from jejunum and liver from patients with morbid
obesity showed considerable interindividual variability. The results provide important information about the
impact of liver- and intestinal CYP metabolism on first-pass metabolism and can be utilized in physiology-
based pharmacokinetic modelling in this patient population.